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u(O, y) = y/2- log (1 + ey). 

Trhe solution of this problem is u(x, y) (x + y)/2 - log (ex + ey). 
Taking h as 0.05, we have written a program in Fortran for the CDC 1604 

comlputer at the University of California, San Diego and have found the following 
ei rors for the computation of u at the points (x, y) given below. By error w-e mean 
here the relative error, i.e., 

error- I (true value - approximate value)/true value 

As a concluding remark, we wish to point out that the techniques used here 
can be applied to the more general equation ux, = f(x, y, u, ux, us). In this 
case, one could use the quadrature formula used above and the Moore-Runge- 
Kutta method to estimate the values of u, ux, u, at the quadrature evaluation 
points. 

I am especially indebted to Prof. P. C. Hammer and A. H. Stroud for many 
discussions on the general techniques of numerical integration in more than one 
variable. 
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Gauss Elimination for Singular Matrices 
By George Shapiro 

1. Introduction. Several variations of a method of successive elimination, 
associated with the name of Gauss, are frequently used to solve systems of linear 
equationis or to invert a matrix. Multiplication of the inverse matrix by the de- 
terminant of the original matrix (which is readily available as an intermediate 
result of the Gauss elimination) yields the adjoint of the original matrix. 

Recently, the use of modular or residue class arithmetic systems for high- 
speed computers has been considered [1]. In such systems, an integer is represented 
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by the set of its residues modulo various primes; that is, by a set of remainders 
obtained when the integer is divided by each of the primes. (More generally, pair- 
wise relatively prime moduli have been considered but prime moduli are required 
for the problems to be discussed here.) The details of the arithmetic of these sys- 
tems are of no interest here; it should be noted, however, that only integers may 
be treated directly. 

The inverse of a matrix A with integer entries may have fractional entries; the 
solution of a set of linear equations Ax = y (x and y column vectors) with integer 
coefficients may be fractional; therefore, in modular arithmetic systems it is neces- 
sary to recast these problems so as to have integer solutions. In each case, the 
product of I A I, the determinant of A, and the solution is a set of integers. (In 
many cases, a factor less than I A I may be used for this purpose, but considerable 
computation is involved in finding this factor.) Thus inversion of a matrix is re- 
placed by finding its adjoint, A *, and the variable x of the set of equations is re- 
placed by z which satisfies 

(1) z = I A Ix = A*y. 

When I A I is divisible by one or more of the prime moduli of the system, A while 
in general non-singular, is singular as far as computations modulo those primes are 
concerned. Thus, the problem of finding A* for singular as well as non-singular A, 
is fundamental to linear algebra in modular arithmetic systems. The author is not 
aware of a significant use for the adjoint of a singular matrix in conventional 
arithmetic systems. 

While the adjoint of a singular matrix is well-defined, the Gauss process breaks 
down when applied to a singular matrix. Thus, it has been necessary to use an al- 
ternate procedure to find the adjoint of a singular matrix. One such procedure is 
described in [2]. However, it necessitates a special treatment of singular matrices. 
In the sequel, a simple extension of the Gauss method which permits the calculation, 
of the adjoint of a singular matrix is described. Applied to a system of linear equa- 
tions with singular coefficient matrix in the same fashion as the usual Gauss tech- 
nique it leads directly to the solution in the form (1). 

2. Gauss Elimination. To avoid confusion, one standard variant of the Gauss 
elimination process will be described and will hereafter be considered as the Gauss 
process. The extension works equally well with other variants; obvious minor 
modifications to the proof of its validity are required. 

To invert the n X n matrix A the process is as follows. The n X n identity, 
I, is adjoined to A to form aln n X 2n matrix (A, I). The non-singular operations 
of row interchanges and elementary row operations (multiplication of a row by a 
nonzero constant and addition of a multiple of a row to another row) are performed 
to bring A first to upper triangular form (the forward course) and then to complete 
the tralnsformation of A to the identity, I, (the return course). At this point, I 
in the augmented matrix has been transformed to A-1 and the determinant of A 
is the reciprocal of the product of the factors used as row multipliers times (- 1 ) 
where r is the number of row interchanges performed. The adjoint of A is given 
by A* A IA-'. 

The forward course may always be completed; when A is singular, one or more 
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rows of the transform of A will be 0. The return course, which starts with the nth 
row of A, and uses only elementary row operations (no row interchanges) can pro- 
ceed only to the point where addition of an (infinite) multiple of a zero rowl to 
other rows is required. 

For definiteness, it is assumed that by this point, all diagonal elements of the 
transform of A are either 0 or 1. If not, the rows of the augmented matrix are each 
multiplied by the reciprocal of the corresponding non-zero diagonal element. The 
product, b, of the reciprocals of all the row multipliers and (- 1) is required. At 
this point then, the matrix (A, I) has been transformed to (T, S) where 

(2) detS= l/b50 

and T has at least one row of zeros. Since the same operations which transformed 
A to T transformed I to S, 

(3) SA = T. 

The same process is followed to solve a set of linear equations except that the 
column y is adjoined to A to form the n X (n + 1) matrix (A, y). This process 
breaks down at the same point. 

3. Extended Gauss Elimination. The extension is simply the addition of the 
following operation, E, to those previously used. When a row of zeros, say the ith, 
is encountered in the transform of A, the diagonal element of that row is changed to 1, 
and in the augmented portion of the matrix all other rows are changed to 0, the ith row 
being unchanged. 

This operation, E, treats the portions T and S or T and Sy of the transformed 
augmented matrix dissimilarly. Let Di be the n X n matrix with a 1 in the (i, i) 
position and 0 elsewhere. Then E is simply: 

T T + Di 

S -DiS 

or 

(Sy) -> Di(Sy) 

Thereafter the ordinary Gauss process proceeds. Silice all diagonal elements 
used in the Gauss process are 1, only the operation of addition of a multiple of one 
row to another is required. This operation has determinant 1. 

If another 0 diagonal element, say the jth, is encountered, the operation E is 
repeated. After a finite number of such operations (at most n) the augmented ma- 
trix of the inversion problem is in the form (I, W). Then, 

bW= A*. 

lF'or the problem of the solution of the set of linear equations, W is not displayed 
explicitly; the augmented portion of the matrix is (Wy); then 

b(Wy) = A*y = z 

from (1). 
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It remains to show that inclusion of the operation E in the above procedure leads 
to A*. 

From (3) it follows that 

A *S* = T*. 

Multiplying on the right by S and using (2) yields 

A* = bT*S. 

Since the ith row of T is 0, the cofactor of each element of T not in the ith row is 
O so that T* differs from 0 only in the ith column. But then T*S depends only on 
the ith row of S so that S may be replaced by DiS which leaves the ith row of S 
unchanged; thus, 

A*= bT*(DiS). 

(This relation verifies the known result that the rows of A* are proportional to the 
ith row of S.) 

Since DiS differs from 0 only in the ith row, the product T*(DiS) depends only 
on the ith column of T*; this column is independent of the ith row of T so that T 
may be replaced by T + Di. Hence 

(4) A* = b(T + Dj)*(DjS). 

If T + Di is non-singular, Gauss elimination on the augmented matrix 

(T + Di, DjS) 

can be completed leading to a matrix (I, W). Clearly the transformation of T + Di 
to I is accomplished by (T + Di)-'; since T + Di is a triangular matrix with diag- 
onal elements 1, its determinant is 1 so that 

(T + Di)-' = (T + Di)* 

and 

W = (T + Dj)*(DjS). 

Substituting in (4): 

A*= bWV 

as required. 
A proof for the case T + Di singular may be had for example, by induction on 

the number of 0 diagonal elements of T. It may be nioted that if 2 or more rows of 
the transform of A are simultaneously 0, say the ith and jth, then S may be re- 
placed by 

DiDjS = 0. 

Since any linear transformation of 0 yields 0, the known result, 

A*= 0 

wheni A is multiply degenerate, is obtained. Unfortuinately, no simple a priori 
test for multiple degeneracy is available; the followilng example shows that the 
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operation E may be required twice for a singly degenerate matrix: 

/ 1 \ 
A = 0 0 1 

\ O 0/ 
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A Remark on a Paper of Bateman and Horn 

By A. Schinzel 

Let fl, f2, --, fk be distinct irreducible polynomials with integral coefficients 
and the highest coefficient positive, such that f(x) = fi(x)f2(x) * *fk(x) has 
no fixed divisor > 1. Denote by P (N) the number of positive integers x ? N such 
that all numbers f1 (x), f2(x), - - - , fk(X) are primes. 

P. T. Bateman and R. A. Horn [1] recently gave the heuristic asymptotic 
formula for P(N): 

() P(N) 1 lNN (hi h2 ... hk )-l ][I I1- (P)(-- 

where hi is the degree of fi and w(p) is the number of solutions of the congruence 

f(x) 0 (mod p). 
Formula (1) contains as particular cases six conjectures from a well-known 

paper of Hardy and Littlewood [3] called by the latter Conjectures B, D, E, F, 
K, P, as well as their conditional theorem X 1. This is evident except for Conjecture 
D which concerns the number of solutions of the equation 

(2) ap-bp' = k (a > O, b > O, (a, b) = 1) 

in primes p, p' with p ? n. In order to apply formula (1) here one should put 

fi(x) = u0 + bx, f2(x) = vo + ax, N = b 
- 

, where uo, vo are fixed integers 

such that auO - bvo = k. 
Conjectures denoted by Hardy and Littlewood by J, M, N are of distinctly 

different character; besides the first has been proved by S. Chowla [2] and Ju. V. 
Linnik [4]. Conjecture A, (a strong form of Goldbach's Conjecture), is a particular 
case of C, Conjectures H and I are particular cases of G. It remains therefore to 
consider Conjectures C, G, L, which are, according to Hardy and Littlewood, 
conjugate to Conjectures D, F, K respectively. We quote them below for the con- 
venience of a reader, with slight changes in the notation (e.g. p, p' denote primes). 
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